
Random sequential adsorption of dimers on fractal structures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 1925

(http://iopscience.iop.org/0305-4470/30/6/018)

Download details:

IP Address: 171.66.16.112

The article was downloaded on 02/06/2010 at 06:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 1925–1933. Printed in the UK PII: S0305-4470(97)79174-1

Random sequential adsorption of dimers on fractal
structures

M S Nazzarro, A J Ramirez Pastor, J L Riccardo and V Pereyra†
Department of Physics, Universidad Nacional d San Luis, Chacabuco y Pedernera, (5700) San
Luis, Argentina

Received 29 October 1996

Abstract. We extend the study of diffusional relaxation on the random sequential adsorption
of dimer introduced by Privman and Nielaba, to fractal media. The effect of added diffusional
relaxation on the deposition of dimers in such disordered substrates makes full coverage in
certain cases possible. We observe that in these cases, the limiting coverage is approached
according tot−ds /2, whereds is the spectral dimension of the substrate. The jamming coverage
is analysed for different fractal substrates.

The deposition (or adsorption) of particles on solid surfaces is a subject of considerable
practical importance. In many experiments on adhesion of colloidal particles and proteins
on solids substrates the relaxation time scales are much longer than the times of the formation
of the deposit.

A well known example of an irreversible monolayer deposition process is the random
sequential adsorption (RSA). This process is well described in literature and has been
investigated extensively in recent years [1–9]. The analysis of such phenomenon include
theoretical studies, Monte Carlo simulations and experimental results, as, for example, the
adhesion of latex spheres on a silica surface [10], which support the RSA model as possible
theoretical tools to treat the irreversible adsorption. Exact solutions are possible, mainly for
one-dimensional problems [1].

In a random sequential adsorption, objects of finite size are randomly deposited
(adsorbed) on an initially emptyd-dimensional substrate or lattice with the restriction that
they must not overlap with previously added objects. The quantity of interest is the fraction
of total area,θ(t), covered in time,t , by the depositing particles or objects. Due to the
already randomly adsorbed particles blocking the area, the limiting or ‘jamming coverage’,
θJ , is less than that corresponding to the close packing(θJ ≡ θ(t = ∞) < 1). The
emergence of this jammed state is influenced by the infinite memory effects. Consequently,
its formation cannot be described by the mean-field theory, except for very early times,
whenθ ∝ t .

The effect of diffusional relaxation on deposition have recently been [11, 12] analysed
in random sequential adsorption of dimers in one-dimensional (1D) lattice. One of the
main feature of added diffusional relaxation, in 1D, is to allow the full saturation coverage
θJ = 1. Without diffusional relaxation the classical behaviour is recovered, where jamming

† To whom correspondence should be addressed.

0305-4470/97/061925+09$19.50c© 1997 IOP Publishing Ltd 1925



1926 M S Nazzarro et al

coverage is given byθJ = 1−e−2 < 1. The other important consequence of added diffusion
to the dimer adsorption in 1D is that the final state is approached according to the∝ t−1/2

power law preceded, for fast diffusion, by the mean-field crossover regime with intermediate
∝ t−1 behaviour, instead of the exponential approach for the pure adsorption case [1, 3].

To explain such interesting behaviour, we can consider that the dominant effect of
diffusion is to bring together single isolated vacancies in the late stages of the deposition.
They can either be covered by an incoming dimer and disappear, or separated again due
to diffusion. Thus, the process will reach its asymptotic long-time behaviour when most
of the empty space is in single-site vacancies. The approach to the jamming coverage
θJ = 1, for large times, will then be related to the diffusion-limited annihilation reaction
A+A→ inert, with partial reaction probability upon each encounter of diffusing particles
A, which represent th single-site vacancies. Such a reaction process is well described in
literature and it turns out that the density of the survivingA-particles decreases as∝ t−ds/2
for large times, whereds is the spectral dimension of the substrate [13]. It is also well known
that a reduced reaction rate [14] allows the diffusion to mix the particles thus resulting in
a mean-field behaviour for intermediate times, which in this case is∝ t−1.

The analysis is also extended to the 1Dk-mers deposition [15]. In this case the
connection will be with the 1D diffusion-limited annihilation reactionkA → inert. By
using scaling arguments it is possible to conclude that the density will follow the mean-field
law ∝ t−1/(k−1) for large times andk > 3, with possible logarithmic corrections fork = 3.

Despite the connection between the diffusion-limited annihilation reaction and the effect
of diffusion in 1Dk-mers deposition, the argument cannot be generalized to higher euclidean
dimensions. In fact, in the case of RSA of lattice hard squares in two dimensions with
diffusional relaxation the approach to the full coverageθJ = 1 is given by the power law
∝ t−1/2. The same behaviour is observed in the deposition of 2× 2 square objects on a
two-dimensional (2D) square lattice where the full coverage is reached [16]. No studies
have been carried out along these lines for deposition on fractals. It is then interesting to
determine whether the argument which connects the diffusion-limited annihilation reaction
with the diffusional relaxation on the dimer deposition is valid on fractal substrates embedded
in 2D. In order to elucidate the problem we generalize the study of added diffusional
relaxation to the dimer deposition on different fractal substrate with fractal dimension
between 1< df < 2.

The fractals we have studied in this work are two well differentiated structures, the
first one is the well known probabilistic diffusion-limited aggregation (DLA) clusters [17],
with df = 1.72, dw = 2.86 andds = 1.20; the others belong to the 2D Sierpinski carpet
family [18]. The advantage with the latter group, is that they can be easily generated on the
computer anddf , dw andds can be suitably varied. The generation of the patterns is shown
in [19]; here we describe briefly the method. A square is divided intom equal units each
corresponding to a site on a square lattice. A certain number, sayl of these are blocked,
leavingk = m− l accessible sites. The connectivity with all the sides of the square must be
guaranteed. This is the basic unit which is repeated self-similarly in subsequent stages. The
Hausdorff dimension of these patterns isdf = ln(k)/ ln(s), wheres is the scaling factor.
Sincedf is given basically by the number of accessible sites and the scaling factor, a number
of different patterns can be easily generated by this method. Figure 1 shows the basic units
of the patterns that we have used in our study. The others quantities which characterize the
fractal structures,dw andds are obtained as the exponent of the mean square displacement
covered by a random walker and the number of the distinct sites visited as a function of
time, respectively.

After the generation of the subtrate we proceed to simulate the RSA process with
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Figure 1. (a) Basic units of Sierpinski carpets. The scaling factor is 4. (b) The second stage
of the generation of the carpet, here the unit pattern is 4. Open squares represent allowed sites.

diffusional relaxation. At each Monte Carlo step a pair of neighbouring sites are chosen at
random, then a decision is made about what type of process will take place: (i) deposition
with probabilityp; (ii) diffusion with probability 1− p, where 0< p 6 1. Note that, the
casep = 1 is the pure RSA process.

If the deposition attempt is chosen, then the sites are occupied provided that both of
them are empty, otherwise the attempt is rejected.

If the diffusion attempt is selected, we test whether both sites are occupied for the
same dimer. The diffusion step proceeds as follows (see figure 2): The number, ‘n’, of
the nearest-neighbour sites of both component of the dimer which belong to the fractal
structure is determined. This number can ben = 1, . . . ,6. Then the movement is selected
as follows. One of the ‘n’ possibilities is chosen at random. If the selected site is covered
by a particle the attempt is rejected. Otherwise it turns out that one of the component
of the dimer’s heads is moved over the empty site by conserving the dimer bond length.
Actually, this can be accomplished by rotating the dimer around an axis normal to the lattice
passing through the dimer’s fixed head. Thus, this relaxation mechanism enables the dimer
to change its direction during diffusion on the surface. It should be noticed that alternative
diffusion mechanisms, such as translation along the dimer’s axis are naturally embodied.
The proposed diffusion method was recently introduced by Wang and Fichthorn [21] to
analyse the movement of homonuclear dimers adsorbed on sc(100) and fcc(100) surfaces.

As in [11], the dimensionless Monte Carlo time variable,t , may therefore be defined
by having one attempt per lattice site in the unit time step1t = 1. Thus, for theN -site
lattice, the time step1t = 1 corresponds toN deposition/diffusion attempts Monte Carlo
steps described earlier. Another convenient definition is the time variableτ = pt which
corresponds to the fixed deposition attempt rate [11]. Under this definition the diffusion
attempt is proportional to(1− p)/p.

In order to analyse the effect of the diffusional relaxation on the deposition process,
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Figure 2. Diffusion mechanism used in the relaxation. All possible transitions on a square
lattice are shown; ‘i’ and ‘f ’ denote the initial and final state respectively.

Monte Carlo simulations were performed for different values of the parameterp. The
number of sites for the fractal structures analysed here were typically of 105 sites (typically
this corresponds to five generations for the Sierpinski structures P1, P2, P3 and P4 with
s = 4). Each data set was averaged over 500 runs. All the numerical calculations were
carried out at a PARIX parallel computer system with eight nodes.

The first structure that we have considered in our analysis is the DLA clusters. In
figure 3, we observe the numerical results of the coverageθ(t) plotted as a function of
ln(pt), for different values of the probabilityp. The pure RSA process onto the DLA
structure,p = 1, gives a jamming coverageθJ = 0.8245. The approach to this final
state (asymptotic regime) obeys a clear exponential law, as in the 1D case. The addition of
diffusion to the adsorption process gives as a result a jamming state with jamming coverages
θJ = 0.9303.

Since relaxation to jamming state may be driven by slowly decaying fluctuations, (see
figure 3) the jamming coverage was obtained by extrapoling the dependence ofθ(t) versus
1/ ln(pt) for t →∞.

Since for any configuration of dimers on the DLA the diffusion mechanism allows for
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Figure 3. Numerical results of coverageθ(t) versus ln(pt) for a DLA. The full curve represents
diffusion relaxation and various values ofp (p = 0.1, 0.3, 0.8, 0.9) (it curves from top to bottom
corresponding to increasing values ofp); the dotted curve represents pure adsorption. The inset
showsθ(t) versus 1/ ln(pt) used to calculateθJ by extrapolation.

all possible transformations between the filled-sites and the empty-sites sets this asymptotic
coverage corresponds to the maximum coverage attainable on the given fractal structure.

In figure 3, it can be seen that the full coverage,θJ = 1 is never reached on the DLA
cluster, even by allowing diffusional relaxation.

In figure 4, the asymptotic regime, for the DLA cluster is shown for various values

Figure 4. Idem figure 3 for long times, plotted as ln[θJ − θ(t)] versus ln(pt), for different
values ofp.



1930 M S Nazzarro et al

of p. As we observe, the limiting coverage is approached according to the power law
[θJ − θ(t)] ∝ t−α with α = 1.22± 0.03 which comes close to the spectral dimension of
the clusterds = 1.20. We can also observe that the asymptotic regime is preceded by an
intermediate time behaviour which is also a power law,∝ t−0.77 different from the 1D
mean-field intermediate decay∝ t−1 behaviour. This is merely a consequence of local
inhomogeneities in the connectivity of the DLA sites which hinders a continuous filling of
the structure with dimers.

The asymptotic time behaviour of the RSA of dimers with diffusional relaxation on
DLA cluster is one of the most interesting features of the process. The power-law exponent
is two times the value of the exponent of density decay in the diffusion-limited annihilation
reactionA + A → inert on this structure. Also the intermediate time regime does not
follows a mean-field behaviour. Certainly, the mechanism of the diffusional relaxation is
probably modified by the presence of a considerable number of inaccessible sites which exist
in the dangling ends and backbends of the structure. We can conclude that the connection
between RSA with diffusional relaxation and the diffusion-limited annihilation reaction,
which is completely valid in 1D, is not valid on the DLA clusters.

Deterministic fractals, as we described above, belong to the Sierpinski carpet family.
Different patterns (see figure 1) have been used to analyse the RSA process of dimers. The
effect of diffusion relaxation on the RSA process, is also analysed for these structures. Free
boundary conditions have been imposed in the DLA structure as well as in all Sierpinski
fractals used in the simulation. Since the number of generations of the deterministic fractals
used in simulations was very large, no finite size effect is observed in the jamming coverage
and kinetics.

In tables 1–3 we have shown different parameters, which characterize fractal structures,
such as the average number of nearest neighbours per site,η, Hausdorff dimension,df ,
spectral dimension,ds , and jamming coverage,θJ , obtained forp = 1 (without relaxation).
As we can observe in table 1, there is not a clear dependence ofθJ on the other parameters.

Table 1. Different characteristic parameters for DLA and Sierpinski structures(s = 4).

Substrate θJ η ds/2 df

DLA 0.8245 2.22 0.60 1.72
P1 0.7896 2.64 0.55 1.66
P2 0.7711 2.36 0.60 1.66
P3 0.7832 2.22 0.61 1.66
P4 0.8952 2.96 0.72 1.79

Table 2. Different characteristic parameters for the fractal generated by pattern 4, upon changing
the relationship betweenk ands.

P4 θJ η ds/2 df

3× 3 0.8885 3.18 0.77 1.89
4× 4 0.8952 2.96 0.72 1.79
5× 5 0.8938 2.88 0.71 1.72
6× 6 0.8936 2.78 0.68 1.67
7× 7 0.8933 2.75 0.68 1.63
8× 8 0.8939 2.73 0.67 1.60
9× 9 0.8947 2.72 0.60 1.58
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Table 3. Idem table 2, by using pattern 1.

P1 θJ η ds/2 df

2× 2 0.6501 2.00 0.44 1.58
3× 3 0.8109 2.40 0.62 1.63
4× 4 0.7896 2.67 0.57 1.66
5× 5 0.8279 2.86 0.63 1.68
6× 6 0.8325 3.00 0.63 1.70
7× 7 0.8444 3.11 0.64 1.71
8× 8 0.8511 3.20 0.58 1.72

In table 2, we have calculated the characteristic parameters using the same pattern (P4)
and changing the relation betweenk and s to generate the fractal structures, in this way,
fractal dimension,df , spectral dimension,ds and the parameterη decrease as the size of the
basic unit increases, however, the jamming coverage,θJ , is almost constant. It is interesting
to note that the value ofθJ ≈ 0.895 for this fractal structure (P4) is close to the value of
the square cactusθJ = 0.8946 [20].

In table 3, we have shown the same study for the fractal generated by using pattern 1, as
we observe,θJ increases with the fractal dimension. In all the cases, we observe that there
is not a clear relationship between the jamming coverage and the different characteristics
of the substrate.

Actually, the maximum coverage allowed for structures generated from patterns 1, 2
and 3, upon an ordered way of filling sites with dimers, is found to beθJ = 0.8 by simple
inspection. However, structure generated from pattern 4 can be completely covered, say
θJ = 1.0 .

The analysis of the large-time behaviour for the patterns 1, 2 and 3 gives a power-
law exponentα, which is far fromds/2. As an example, in figure 5 we have shown the
asymptotic regime for the structure P2, for different values of the probabilityp, the best
fitting parameter obtained isα = −1.52 (hereds/2= 0.6).

Figure 5. Idem figure 4 for pattern 2 (P2);θJ = 0.8 for this case.



1932 M S Nazzarro et al

Provided that full coverage is reached in the structure generated by using pattern 4, we
considered the case P4 in detail. In figure 6, we can observe the numerical results for the
coverage for large times, plotted as ln[θJ − θ(t)] versus ln(pt), for p = 0.1, 0.3, 0.8, 0.9.
The size of the unit cell used was 4× 4. From the slope of the curve we can obtain the
exponent of the power law which approachedα = 0.72 in agreement with the valueds/2.
This result is in accordance with the argument of Privman and Nielaba [11] which states
that the density of the surviving particles (empty sites)ρ, on fractal substrate decreases as
ρ ∝ t−ds/2. In order to confirm this speculation we varied slightly the spectral dimension
of the fractal structure by changing the scaling factor froms = 4 to s = 3, in this way
ds changes fromds/2 = 0.72 to ds/2 = 0.77, respectively. It should be noticed that this
small change varies the slope of the long-time regime (see figure 7), so that the agreement

Figure 6. Idem figure 5 for pattern 4 (P4)(s = 4). Particularly,θJ = 1.0 for this case.

Figure 7. Idem figure 6 fors = 3.
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α = ds/2= 0.77 is recovered again. This result reinforces that the argumentρ ∝ t−ds/2 is
valid for fractal structure which can be fully covered by the deposition-diffusion mechanism.
It is important to emphasize that exponentα describes the kinetics at short and long times.
At intermediate times a well determined crossover region appears asp increases.

As a conclusion, in this work we have studied the random sequential adsorption of
dimers on different fractal structures embedded in 2D. We observe that there is not a
relationship between the jamming coverage and the different characteristic parameters of
the substrate. The effect of added diffusional relaxation to the deposition process, allows
full coverage in certain structures, only in these cases is it possible to confirm the argument
of [11], that is, the empty sites fraction decay as [θJ −θ(t)] ∝ tds/2. However, this rule does
not hold for structures where full coverage cannot be reached, as for instance the DLA, P1
P2 and P3, structures for which the exponent of the power law differ significantly from the
value ofds/2. Particularly, for DLA [θJ−θ(t)] ∝ t−α with α ≈ ds . It appears that the set of
inaccessible sites in a given structure promotes local density inhomogeneities (fluctuations)
that are slowly smeared out, hence slowing down the time relaxation to maximum coverage.
It is known from theA + A → inert reaction kinetics that the long-time decay is mainly
dependent on the local density inhomogeities. Accordingly, geometrical constraints of the
structure leading to local density fluctuations are expected to have a predominant influence
on the long-time kinetics of dimers onto it.
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